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Parabolic Versus Exponential Growth

Günter von Kiedrowski
Institute for Organic Chemistry, Georg-August-University, Tammannstraße 2,

37077 Göttingen, Germany

The paper describes an analytical treatment of artificial self-replicating systems. All artificial self-
replicating systems known today are minimal replicators in the sense that their kinetic behavior can
be rationalized by a common, minimal reaction model which is outlined in the introduction. ln the
second section, empirical rate equations are introduced which have proven useful for the evaluation
ofexperimental concentration-time profiles. The third section begins with an discussion ofreaction
models which have been described earlier to explain the autocatalytic synthesis of self-replicating
template molecules. It is followed by an analytical treatment of the minimal reaction model: A * B
+ C = ABC - C, = 2C, where C is a self-complementary template molecule, A and B its precursor

molecules, ABC a termolecular complex, and C, a template duplex. It is assumed that the irreversible
formation of C, from ABC is the rate limiting step and that the total template concentration is small
as compared to its precursors. The analytical expressions derived allow us to estimate the rate and
autocatalytic reaction order for synthetic self-replicating systems from the elementary rate and
equilibria constants involved. Three limit growth laws for minimal self-replicating systems termed
as parabolic, weak exponential, and strong exponential can be distinguished. The following
section deals with the influence oftemperature. Strong exponential growth is to be expected for low
temperatures, whereas weak exponential growth should occur at high temperatures. Parabolic
growth is expected for average temperatures. Depending on the activation energy ofthe irreversible
step as well as on the enthalpies of the formation of ABC and Cr. the maximum of the autocatalytic
rate occurs either at the temperature of the transition from strong exponential to parabolic growth.
or, at the temperature of transition from parabolic to weak exponential growth, or, at an average
temperature. The analytical results from the treatment of the above minimal reaction model are then
compared to results from more realistic models. In particular, it is shown that the formation of a

complex AB from A and B makes it dilircult to observe strong exponential growth which otherwise
might be found at low temperatures.

v I Introduction 115

of Autocatalysis

119

119

122

|,/-J

126
126
r28
130

3.1 Minimal Versus Full Modeline .

2 On the Kinetic Behavior of Minimal Replicators
2.1 Empirical Rate Equations and the Square Root Law

2.2 Nomenclature of Autocatalytic Growth Functions
2.3 Differences Between Parabolic and Exponential Growth

3 How to Explain the Kinetic Behavior?

3.2 Rapid Equilibria
1.3 Calculation of the Autocatalytic Reaction Order p

Bioorganic Chemistry Frontiers. Vol. 3

@ Springer-Verlag Berlin Heidelberg 1993



tt4 G. von Kiedrowski

3.4 Thermodynamic Requirements for Parabolic and
Exponential Growth

3.5 Classification of Minimal Replicators.

4 The Effect of the Temperature on the Equilibria, Autocatalytic
Rate and Reaction Order

5 Summary and Conclusions 143

6 References. 145

131

133

135

J



Minimal Replicator Theory I: Parabolic Versus Exponential Growth

I Introduction
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Recent years have seen considerable progress in the development of artificial
self-replicating systems (review and overview articles: tl 8]) From a general
point of view, self-replicating systems can be defined as autocatalytic reaction
systems capable of passing on structural information 12, 91. This requires a
certain kind of autocatalyst, namely one which can act as a molecular template
[10] in the autocatalytic event. Autocatalytic template molecules preorganize
their precursor constituents in a defined spatial arrangement which allows them
to transfer the structural information from the molecular template to the
molecular copy 12, 4]. Thus, the term information is understood in a most
elementary sense: to inform means to give a thing a form. Structural information
can be stored as constitution, configuration, or even long-living conformation.
Although these terms refer to the network of covalent bonds between atoms they
may be extended to the network of covalent bonds between residues which
replace the atoms as superatoms. The constitutional information of a linear
network is given by the sequence of the residues. All informational [11] self-
replicating systems known so far are based on sequential templates which have a
linear topology. Future developments may explore other topologies, for ex-
ample, branched, cyclic, or two-dimensional arrays of residues. In any case,
information transfer necessitates a scheme for molecular recognition allowing
the constituents to be ordered on the template. Molecular recognition refers to
weak, noncovalent interactions based on charge, shape, and solvent effects

L12 l4l. Binding is achieved by the attraction of opposite charges arranged on
the surfaces of the shapes. In dyadic schemes for molecular recognition the
interacting partner P+ and P- are thus necessarily complementary (P+ binds
P-) although other schemes are conceivable, in which non-complementary
partners may interact. For example, triadic schemes may utilize the arrange-
ments P* - C- - P*, and P - C+ - P- where C+ and C- are charged
auxiliaries such as metal ions or anions.

The present design of artificial self-replicating systems is clearly inspired by
nucleic acids as natural prototypes ll, 4,7f. Logically, the search for artificial
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116 G. von Kiedrowski

replicators originated in the field of nucleic acid chemistry [5, 15, 16]. It was
guided by the view of an RNA-world [9, 17.2ll which became popular among
molecular biologists 122 241 and bioorganic chemists ll, 25 27) after the
seminal discovery of catalytic RNA [28, 29]. According to this view, life existed
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Fig._2a. Self-replicating hexadeoxynucleotides of von Kiedrowski et al. L32,34,361. The auto-
catalytic templates shown are formed from two trideoxynucleotides: a trimei:'-phosphate whose 3,-
phosphate group is activated in situ by the water soluble carbodiimide EDC, and another trimer
which bears a n 'rleophilic group at its 5'-terminus. (b) Computer-generated model of the termolecu-
lar complex ABC of system I (s_tandard B-DNA geometry). The ittacking 5,-hydroxy group of the
first trimer (indicated by a small anow) is in closi spatiai proximity to tie activatej l-,-phäsphate
group of the second trimer
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Fig. 2. (Continued)

on our planet before nature invented the genetic code and a translation
machinery to synthesize proteins. central to the view of an RNA-world is the
hypothesis that nucleic acids are able to replicate in the absence of a pro-
teinogenic replicase. This central hypothesis became the subject of experimental
tests in many laboratories. Molecular biologists began to search for ribozymes
acting as a primitive replicase [30, 31], and bioorganic chemists began to search

^ for nonenzymatic template-directed condensation reactions leading to an auto-
catalytic oligonucleotide [1, G6]. The latter approach proved successful after
reducing the dimension of the problem to a managable scale [32]. Following the
design of the first real working example 132], all synthetic replicators so far
published are based on two simplifications [33-39]. First, the number of
necessary condensation steps to yield a template molecule has been cut down to
a minimum of one. Second, and contrary to the natural prototype of nucleic acid
replication, the template is self-complementary; it is structurally undistinguish-
able from its copy. In nucleic acid replication, the original strand acts as the
template for the complementary copy. The copy strand in turn facilitates the
synthesis of the original strand. consequently, the synthesis proceeds in the
sense of a cross-catalytic reaction here whereas the artificial templates are
autocatalysts in the direct sense.

lt7
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A minimal model which explains the autocatalytic synthesis in these systems
is shown in Fig. 1 132): The self-complementary template C catalyzes its own
formation from two complementary constituents A and B. A total of three steps
is required to generate the autocatalytic cycle. In the first step, which is
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Fig.3a. Self-replicatingtetraribonucleotideanalogueofZielinskiandOrgel[33].Asabove(Fig.2),
the bond formation is mediated by the water-soluble carbodiimide EDC. @) Synihetic replicatois of
Rebek et al. [35, 37]. The templates shown are hybride molecules in the sense thit they are
composed of a nucleic acid constituent (a 5'-aminoadenosine derivative) and an artificial receptör for
adenine (a derivative of Kemp's triacid)
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Fig. 4. Termolecular complex of the fully synthetic replicator of Terfort and von Kiedrowski [39].
\lerlecular recognition is achieved by means of amidinium-carboxylate salt bridges which substitute
,-.rmplementary nucleobase pairing. The formation of the Schiff base proceeds reversibly. Note that
Sr stem I is autocatalytic, whereas System II is catalytic. Very recently. Goodwin and Lynn described
; similar example of a reversible template directed reaction based on a Schiffbase formation [55].
\nother related example was reported by Persico and Wuest [56].

re\ ersible, the template C binds its constituents A and B to yield a termolecular
crrmplex ABC. In this complex, the reactive ends of the precursors are held in
close spatial proximity which makes it easier to form a covalent bond between
ihem. In the second st€p, the termolecular complex ABC is irreversibly trans-
itrrmed into the duplex Cr. In the third step, which again is reversible, the
Jissociation of the duplex C, leads to two template molecules C. Both of them
,lan begin a new round of synthesis. The above scheme was originally applied to
:chieve non-enzymatic replication of a self-complementary hexadeoxynucleo-
:ide in 1986 (Figure 2a,b, System I) [32], later to oligonucleotide analogues
rFi_eure 2a, System III and IV; Figure 3a, b) [33 37], and recently to template
molecules in which the nucleobases were replaced by other functionalities for
molecular recognition (Figure 4, System I) t391.

2 On the Kinetic Behavior of Minimal Replicators

2.1 Empirical Rate Equations and the Square Root Law of Autocatalysis

T1 pical for an autocatalytic reaction is a sigmoid (S-shaped) curve for the time-
,-Lrurse of the autocatalyst formation. Initial experiments on the formation of a
self-complementary hexadeoxynucleotide from two trideoxynucleotides (Figure
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2a, System I) however did not reveal any sigmoid curve for the production of the
hexameric template ar all 132). Nevertheless, an autocatalytic contribution to
the formation of template molecules could be confirmed in an indirect way. In
experiments, in which the template was added initially, an increase in the rate of
template synthesis was observed [32]. Initial rates of template synthesis, ro, were
determined from concentration-time profiles at early reaction times [32]. Data
from a series of experiments in which the initial concentrations of the template,
c6, wils varied while all other concentrations were kept constant allowed an
empirical relationship to be established [32]:

ro:a./co+B (l)
Equation (1) means that the template c is formed from A and B via two
pathways: an autocatalytic pathway which is characterized by the empirical
constant a, and a non-autocatalytic, viz. template-independent bimolecular
pathway which is measured with the empirical constant B. The latter accounts *,_
for the initial rate of template synthesis in the absence of template. According to
Eq.(1) the rate of autocatalytic template synthesis follows the square-root of the
initial template concentration (and not the initial template concentration itsel1.
In other words, the autocatalytic reaction order is not 1, but 112 eti: xr 2).

This peculiar rate law was named the square-root law of autocatalysis [32].
More recently, another empirical rate equation was used to evaluate concen-

tration-time profiles of self-replicating systems [36]:

dc

* 
: (ao - c)(bo - c)[k"(c + co)P + ko]e u", (2) :--
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Here, dc/dt describes the rate of template synthesis, whereas c contains the
concentration of template molecules that have been synthesized at the reaction
time t. ao, bo, co are the initial concentrations of A, B, and C, respectively. Note
that the concentrations given in Eq. (2) do not reflect the equilibrium concentra-
tions of the corresponding species. The latter cannot be measured in these
experiments [40]. Instead, the expressions ao - c, bo - c, and c + co refer to
measurable total concentrations. For example, c + co refers to the sum of the
concentrations of c, ABC, and c, whereby the concentration of the latter is -- -taken twice, Implicit in Eq. (2) is the mass-balance between A, B, and c: Each
molecule of A and B which is consumed in the autocatalytic or non-auto-
catalytic pathway adds to the pool of existing template-molecules c. The
implication of mass-balance restricts the application of 

-Eq. 
(2) to those systems,

in which A and B react solely to the template c. In other words, side reactions
which lead to any other consumption of A and B are forbidden if Eq. (2) is
chosen for the kinetic evaluation. This restriction however does not apply to nq.
(1). The apparent rate constants ku and ko refer to the autocatalytic and the non-
autocatalytic formation pathway, respectively. The term apparent means that
these constants are complex quantities which comprise elementary rate and
equilibrium constants as well as environmental factors (pH, ion strength) and
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the concentrations of other species (i.e. condensing agents). For the case of a
square-root law, in which the reaction order p is set to l12,the apparent rate

constants k" and ko are connected with the empirical constants a and B as

follows:

u: ku ae b6

9: kr ao bo

The exponential factor and its apparent constant k" in Eq. (2) accounts for a

first-order (or pseudo first-order) decay of a species, which affects the rate
although it does not have any effect on the mass balance between A, B, and C. It
allows to correct for hydrolysis effects when studying self-replicating systems

based on condensation reactions in water [36]. The decay of an excess conden-
sing agent whose hydrolysis is catalyzed by A can be taken into consideration.
When studying the self-replication of oligonucleotides, for example, A is an

organic phosphate which quickly reacts with a water-soluble carbodiimide
to form a carbodiimide-adduct, A* 132 34,361. The latter in turn is predomin-
antly hydrolyzed to regenerate A. Sometimes, A* reacts with B to give C. For
low degrees of activation (meaning that A is always in excess of A*) and low
degrees of conversion (from A* to C), the decay of the condensing agent can be

approximated as a pseudo-first order process [36]. Alternatively, if A is con-
sidered to be a pre-activated precursor (i.e. an active azolide or ester which has

been freshly synthesized prior to the experiment), the exponential factor may
account for its hydrolysis. To preserve the mass-balance in this particular case,

the quantification method must not distinguish between the hydrolyzed and
non-hydrolyzed form of A. For efficient self-replicating systems in which the
hydrolysis is negligible on the time scale of the measurements, the exponential
factor can be omitted.

In summary, if one deals with a self-replicating system in which C is the only
observable product, it is recommended to use Eq. (2) with or without (if possible
without) the exponential factor. As one will see later, the advantage of an
"empirical" gross model function such as (2) is that the apparent rate constants
derived are more reliable than those which can be derived from simulations of
the complete mechanism. This is due to the fact that some rate and equilibrium
constants, i.e. K, in Fig. 1, cannot be measured directly. Instead, their values
have to be chosen more or less arbitrarily which in turn affects the numerical
r alues of other rate constants to be determined. One should be aware, however,
under which mechanistic circumstances a square-root law and empirical rate
equations based on it are valid. One objective of this paper is therefore to give
the experimentalist an idea what the experimental time courses should look like
for the case of a square-root law compared to other rate laws which are possible
for the reaction scheme in Fig. 1. The other objective is to provide a simple
classification scheme, which allows us to predict the rate law from an inspection
of the irgernal equilibria involved.

(3)

(4)
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2.2 Nomenclature of Autocatalvtic Growth Functions

The autocatalytic reaction order p in rate Eq. (2) determines the type of the
autocatalytic growth curve. As it will be shown later, there are basically only two
autocatalytic reaction orders which can be expected for self-replicating systems
which work as depicted in Fig. 1. The first case is p: 1, the second p: ll2.
Note that these are extreme cases; transient reaction orders, 112 < p < 1, may be

found in real systems as well. Let us now consider a pure autocatalytic synthesis
of template C at an very early stage of the reaction where the consumption of A
and B is negligible. We may rewrite Eq (2) in the form:

(s)
dc
-:ücpdt

Integration of Eq. (5) in the time interval between 0 and t and the corresponding ,
concentration interval between co and c gives:

F1 F

l* : lzdt (6)
lcP I

""öo

Note that the elementary integrals which must be chosen for the left side of Eq.
(6) are case-dependant. For the case p : 1, dc/c is integrated to give ln c,.whereas

drl
in the case p: ll2, the differential equation 7 : x" yielding the elementary

ox
t.

integral lxn+1 is the prototype. It follows from Eq. (6):n+ I

p:1: lnc-lnco:a1

p: rl2: Ja - J%:;,

(7)

(8)

From Eqs. (7) and (8), the concentration c can be expressed as a function of the
time t:

P: 1: c: co€at

/ - d\2p: | 2: c: 
lJco 

+ 
2tJ

(9)'-t'-

(10)

It becomes evident that Eq. (9) describes an exponential growth function.
Equation (10) yields, for infinitesimal small concentrations c6, the growth
function:

q.2 ^'c: t'- (11)
4

according to which the concentration increases with the square of the time. Since
the graph of function (11) shows a parabola (parabola equation: y: mx2),
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rutocatalytic growth based on the square-root law has been recently termed
parabolic growth [ 1, 36]. Again, the growth functions (9)11 l) approximate the
lutocatalytic growth curves only at a very early stage of the reaction since the
.rrnsumption of the precursors is not taken into consideration. "Real" auto-
catalytic growth curves are typically (but not necessarily) sigmoid which is the
,-r'rns€euorlce of the decrease of the precursors.

2.3 Differences Between Parabolic and Exponential Growth

Parabolic growth is always a "weaker" type of autocatalytic growth when
compared to exponential growth. This is illustrated in Fig. 5 for the case of pure
autocatalytic syntheses. The dashed curves account for the ideal case of un-
limited growth; they represent the graphs of the functions (9) and (10). The solid
curves refer to the case of autocatalytic growth which is limited by the

consumption of the precursors. Both solid curves were generated using the
integrated form of Eq. (2) in which ko and k" were set to zero. Both curves start at
the same initial concentration co with the same initial slope, thus, simulating
equal initial rates of template synthesis. To account for the latter, the apparent

constants ku were set as follows: k" (parabolicl : ]cok" (exponential). As it is
evident from Figure 5, the change ofthe autocatalytic reaction order p produces
a dramatic effect on the S-shape of the curves. The maximum of the auto-
catalytic rate occurs at the point of inflection at which the second derivative of
the concentration as the function of the time becomes zero:

d2c

-:t)dt'
(12)

Generally, the autocatalyst concentration c, at the point of inflection is calcu-
lated from the first derivative of the corresponding rate equation [41]. c, is then
used in the integrated rate equation to calculate the time of inflection t,. When
applying condition (12) to Eq. (2), however, no explicit analytical equation for c,

can be deduced. We have therefore employed a numerical approximation
technique to calculate the inflection points shown in the following figures.
Figure 5 illustrates, that the inflection concentration c, for the case of parabolic
growth (b) is typically smaller than in the case of exponential growth (a).

In real experimental systems however, the autocatalytic synthesis of tem-
plates C is never completely "pure". Figure 6a shows in the exponential and
Figure 6b in the parabolic case how the growth curves respond to an increase of
ko which accounts for the nonautocatalytic formation of template molecules.
The ratio:

k"
o-l

Kb
(13)



,',b

t24

10

8

G. von Kiedrowski -

>6
o

d1

Fig.S. (a) Exponential and (b) parabolic
growth curves. The dashed curves represent the
ideal case of unlimited growth described by the
functions (9) and (10), respectively; co
:10 6M, ry(a): I0 2s t, a(b)
: 10 s M1j2 s 1. The solid, sigmoid curves

were generated with the integrated form of Eq.
(21: kb:k.:0. a6:bo:10-3M. co
: l0 6 M, p(a) : 1, p(b): 112, k"(a)
: 104 M-2s t, k"(b) : 10 M 3/2s 1. A dot

indicates a point of inflection
o.'5 1.b 1.'5 2.O

t/h

elM-l = 10, 102
1

10-

104

10-

10"

100 150
tlh

200

tlM-12 =I0

102
t

10-
to1 to5, to6

0.5 1.0 1.5 2.O

tlh

Fig. 6a, b. Dependancy of the growth curves from the autocatalytic efficiency e for (a) p : 1, and (b)
p : l12. All curves were generated by integration of Eq. (2) using the conditions: ao : bo : l0-r M.
co :0, k" :0, k" : 10, kb - k"/e. Dots indicate points of inflection. Note that in the case of
parabolic growth (b), the growth curves for e : 104 - 106 overlap within the thickness ofthe curves

10

>6

50

10

>6
o

a4



',1.:.:::... R:plicator Theory I: Parabolic Versus Exponential Growth 125

ni;:-riS the autocatalytic efficiency, it decreases with an increase of ko. Again,
E: I , ri as used to generate the set of curves. Both, in Fig. 6a and in Fig. 6b, the

S-:r:13 becomes visible only above a critical threshold value of e. This explains
.i :'.. rr ]ome experimental systems, a sigmoid production of the template could
,.. : re detected although an autocatalytic pathway was established [32-35]. In
rJ:r itr be able to observe a sigmoid curve in an experimental system, e should

r,: :rtr\e 102 for p: ll2 or above 104 for p: I if one accounts for the

-:.:e rrainities of experimental profiles. There is a striking difference between the
: r::3iprrnding growth curves when e increases towards large values. In Fig. 6b,

,:.i ertr$ th curves become more and more similar finally approaching the curve
: " pure autocatalytic synthesis whereas in Fig. 6a, the growth curves are

..;.rdilv shifted towards longer induction periods. In other words, for the case p

- I l. the inflection time t, becomes finite at infinite e whereas for the case p
: 1. ti approaches infinity at infinite e. The experimental consequence of this
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fact is that parabolic replicators behave almost "purely" at values of e which are
experimentally accessible. The latter in turn makes it difficult to differentiate
between an efficient and a very efficient replicator. The opposite applies to
exponential replicators. Here, attempts to increase the autocatalytic synthesis at .
the cost of the non-autocatalytic counterpart will be surely repaid the outcome
of the experimental curves.

From an organic chemist's point of view, the easiest way to detect a
parabolic or exponential replicator is to follow the formation of template
molecules in the presence of increasing initial concentrations c0 at an early stage
of the reaction (Fig. 7a, b). Typically, four experiments are performed in which co
is varied as follows: co(1):0, co(2): y, co(3) :2y, cog):4y, where y is
typically between 2-10% of the initial concentration of the precursors 132-34,
36, 39]. Note that from the second experiment, the initial concentrations co are
doubled when proceeding to the next experiment. In the exponential case (Fig.
7a), the concentration differences c : c(i) - c(1), measured at any early time, !
approximately reflect the ratio 1 :2 : 4 whereas in the parabolic case (Fig. 7b), the
corresponding ratio is given by l:r 1:la.

How to Explain the Kinetic Behavior?

3.1 Minimal Versus Full Modeling

In the previous section, it was demonstrated that a simple empirical rate
equation, Eq. (2), can be used to generate a whole variety of autocatalytic
concentration-time profiles. The question arises how the autocatalytic reaction
p depends on the concentrations, rate- and equilibrium constants involved. In
the following sections, it will be shown how the reaction order p can be
calculated for systems in which the transition from the termolecular complex
ABC to the template duplex C, is the rate determining step of the cycle. The
assumption of rapid equilibria holds for all experimental systems so far de-
scribed. According to Fig. I, the autocatalytic synthesis is modeled by a total of
three steps:

A+B+C=ABC (14)

2C=C, (15)

ABC - Cz (16)

we refer to Eqs. (14H16) as a minimal model for the reactions taking place in
the autocatalytic channel 1321. In contrast, a full model for the autocatalvtic
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i..-.,-.:>i> irccounts for ail possible transient complexes. Here, the net equation,
:: -l'. becomes resolved into:

{-c=AC (r7)

B-C=BC (18)

{C+B=ABC (19)

BC+A=ABC (20)

" 
.,.:.-k et al. modeled Rebeks self-replicating system of 1990 [42]. The reaction

- . i:i consisted of Eqs. (15 20) which account for the autocatalytic reaction
,.:.: *hereas the synthesis in the nonautocatalytic reaction channel was
::':--:ibed by:

A+B=AB (21)

.{*B+C (22)

.\B - C (.23)

\.-*ick et al. assumed rapid equilibria for the reversible reactions expressed by
E;. tl5), and (17)f2l) l42l rheoretical concentrarion-time profiles were
-.'mputed by numerical integration of the set of differential equations derived
::om Eqs. (16),(22) and (23) [42]. Prior to an integration step, rhe equilibrium
iistribution of all species was calculated iteratively [42]. Although some insights
lnto the dependancy ofthe growth curves from the initial concentrations and the
rate constants of the irreversible steps were presented, no general explanation
rr as siven how the growth curves and the autocatalytic reaction order depend
qro th€ internal equilibria 142). lt was nevertheless stated that the experimental
irneric data fit Eq (2)quite well if a square-root law of autocatalysis (p : 1/2) is
...umed [42].

Srmilar modeling studies were performed in 1985 for the full reaction model
: a self-replicating hexadeoxynucleotide [43]. rn contrast to the method

::rplored by Nowick et al., the computation of the rapid equilibrra was not
::rlrilted from the numerical integration. Instead, the set of differential equa-

:.s iLrr both, reversible and irreversible steps was integrated using a solver for
.: i.irlTerential equations as described by Gear [44]. These simulations allowed
-' .-r .\aluate the conditions that lead to a square-root law. Later simulations
- :,--:med that, for the autocatalytic reaction channel, the minimal model as
:-.;:,bed by Eqs. (14)116) is indeed sufficient to derive a reasonable value for
.-: jutLrcatalytic reaction order p in many cases. This was expected from
-.::r!rdvnamic considerations. As a consequence of the latter, the differential

:-.-.:iitros describing the reaction model could be further compressed into a
. -. : "empirical" rate equarion. Eq. (2),

Tie adrantage of such dynamic simulations is that they can be performed
. ,.-. :o\ conceivable full reaction model and that the numerical concentration
'.-..:itrm which p can be computed are rather precise. However, dynamic
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simulations do not reveal any analytical expression which lets one understand
the internal dependencies-by themselves. Insight derived from simulations is

always based on numbers and not on the relationships which lead to those
numbers. The latter may be found from an inspection of the computed data. The
opposite ("classical") approach is to derive the theoretical relationships first and
then to compute some numbers which may illustrate the relationships. This
approach, however, necessitates that the reaction model is minimal at least for
the case of self-replicating systems and at least if interpretable explicit equations
are to be derived.

In the following, the fundamental insights into the dynamics of a self-

replicating system come from an analytical treatment of the minimal reaction
model as described by Eqs. (14H16). The results of this analytical treatment are

later compared with those which can be computed numerically for more realistic
reaction models.

3.2 Rapid Equilibria

The calculation of the autocatalytic reaction order p makes it necessary to
express the equilibrium concentration of the termolecular complex, [ABC], as a

function of the total concentrations and the equilibrium constants. Let [A], [B],
[C], [ABC], and [Cr] be the equilibrium concentrations of the corresponding
species. The total concentrations of molecules A, B, and C are approximated by:

a: [A] + [ABC] : [A]
b: tBl + [ABC] :: [B]

c:[C]+[ABC] +21C2)

(24) :
(25)

(26)

In Eqs. (24) and (25) it is assumed that the relative contribution of [ABC] to the
total concentrations a and b is negligible. This is always the case if the total
template concentration c is small compared to the precursor concentrations a

and b. The assumption is valid for the initial stage of autocatalytic growth as

well as for experiments in which the initial rate of template synthesis is '*
monitored in the presence of small concentrations of added template. Note that
the concentrations a and b do approximate the total concentrations of the
precursors A and B only for the case that A and B do not interact. If the latter
interaction is taken into account (cf. Eqs. (34H35), a and b refer to unbound
precursor concentrations.

The overall formation constants of the complexes ABC and C, are:

[ABC]*' : 
LAr[s]rc]

Kr:[A

(27)

(28)
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-:ir-rnS tl7) and (28) allow us to calculate [C] and [C2] from [ABC]:
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_ ,nd [Cr] in Eq. (26) are substituted by expressions (30) and (31), respect-
-,.. This leads to the quadratic equation (32) whose physical meaningful
--:;..n is expression (33):

cl=..t1::1"=rABCtq--r K1[A][B] -'"

.C,l : Kr[C]'= Kz[ABC]2q2

rABCl'? + ffran.t - dF: o

(30)

i:rt

[ABC]: u/8Krcq *(1 *q)' q-
4K19'

E: ration (33) implies that no further equilibria except those expressed with K,
.:d K. exist. Additional equilibria must be considered explicitly. It is very likely,
. -.: e.rample, that A and B form a complex AB since A and B are complementary.
L..gically, the same recognition principle which allows the formation of the
:r'rmolecular complex ABC will allow an interaction leading to a precursor
.'!rmplex AB. If this complex is formed, the quantities a and b no longer account
,..: the approximate total concentrations, but for the unbound concentrations of
\ .ind B which are now unknown. The latter concentrations, however, can be
::::mated from the known total concentrations co and c" assuming that AB has
::3 :rrrmation constant K.:

Ko(co - cu) - 1 + JK3(co - cu)2 + 2Ko(cA + cB) + I

r 1?\

(3 3)

ßaa)

(34b)

2Ko
L_^u - !B - lA -T- 4

F...n.r Eqs. (34a) and (35a), the following expression
l" ,'an be derived:

which replaces expression

r.:::her possibility is the formation of hairpins t45]. If, for example, the

=:r:,:te C forms a hairpin C'having the formation constant K., the variable q
:. E;- r-13) must simply be replaced by the expression q.(1 + K.) in order to
:r....3 r proper value for [ABC]. In any case, Eq. (35) holds for situations, in
. - . ; r [ \ BC] is small compared to co and c". If this is no longer valid, or, if more

(3 5)
2K.,
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coupled equilibria must be considered, it is recommended that [ABC] be
computed by numerical approximation techniques instead. It should be men-
tioned that Eq. (33) does not necessarily reflect the real equilibrium concentra-
tion of the termolecular complex since intermediate complexes such as AC and
BC are not considered. The calculation scheme implies a cooperative formation
of the complex ABC which means that the concentrations of the intermediate
complexes AC and BC can be neglected. This particular simplification however
does not change the autocatalytic reaction order to a significant extent, as long
as [ABC] is small compared to cn and cu.

3.3 Calculation of the Autocatalytic Reaction Order p

Each autocatalytically synthesized template molecule which adds to the concen-
tration pool c is formed via the termolecular complex ABC. The rate of
autocatalytic template synthesis is therefore given by:

ff: opou.1,

where k is the elementary rate constant of the irreversible step. At early reaction
times, the autocatalytic reaction order p template is implicitly dofined in the
context of Eq. (5). An explicit equation for the reaction order p is given after
"logarithmization" of Eqs. (5) and (36):

/ r^\
dlnlll I

\dt / dln[ABC]
(3 7)Y - dln(c) dlnlc)

According to Eq. (37) the reaction order p does not depend on the rate
constant k of the irreversible step. This is always the case if the latter is rate-
determining. In order to find an analytical expression for p, one has to

remember that dln(c) : ;0" Differentiation of Eq. (33) according to (37) needs

. dy dydudv
concatenatlon, ;i 

: 
d, d, *, substituting ln[ABC] as y, ln(c) as x, the

numerator of Eq. (33) as u, and the expression under the square-root of the
numerator as v. It follows:

Y_
4Krcq2

8Krcq2 + (1 + q)'- (1 + qtv/sKtqt+ (1 + qf
The practical value of Eq. (38) is to predict p from K, and K, for a given set

of concentrations a, b, c. This is especially useful if the initial rate of template
formation is measured as a function of the template concentration added
initially. From these measurements, an experimental reaction order can be

(36)

(38)



- i.:.:;.uor Theory I: Parabolic Versus Exponential Growth 131

- - - --- ::J * hich may be compared with the predicted value for p. A significant
- - - r:r,:i..-\ betrl'een those numbers may indicate that either the kinetic data or
- : . :r:r.rdvnamic data are erroneous. Again, one has to be aware that the
--- .. ..rder defined with Eq. (38) is valid for the condition that the total
.-'r:,3 .-rrncentration is small compared to the total concentration of the
--:--r:-.:.. When applied to Eq. (2) the latter condition reads: (ao - c),

:-: '. end to those experiments in which the initial template concentrations,

-:: :mall compared to the initial precursor concentrations ao and bo. As we
.-:Jerstand later. the constraint turns out to be less demandins for the case

,:.r itrlic reDlicators

-r,J Thermodynamic Requirements for Parabolic and Exponential Growth

:-.-..:lrt.ro (38) describes the reaction order p as a function of five variables:

p : f (a, b, c, Kr, Kr) (39)

. : ., fi red set of concentrations, a, b, c, the reaction order p is a function of just
.,.,. rariables: K, and Kr. Self-replication experiments with C/G-rich hexa-

::.'rrnucleotides are typically carried out at millimolar concentrations of the
.:rniers A and B. Growth of template C is usually followed at template-
, rncentrations between c : I - 100 pmol/I. Figure 8a shows for a typical set of
:--ncentrations (a: b: l0-3 M lunbound cohcentrations, cf. Eqs. 34a,b),
- : -i x 10 s M, cz:7 x 10-a M) how the reaction order p depends on the
, ::pler formation constants K,, and Kr.

Ir becomes evident that a square root law leading to parabolic growth
: - 1 l) is to be expected for systems in which the duplex C, is sufficiently
. .rie tK, > 106 M-r) whereas the termolecular complex ABC must be suffi-
- :::ir less stable than Cr. Figure 8b shows the corresponding contour plot.
. .i.11d5 high values of K, and K, the contour lines run parallel following the
:: -;tiOn:

losK,
log Kr -- --F * s, (40)

z

::3 s is the intercept of these lines at the log Kr-axis. To keep p below 0.55, for
: ,::rpie. s must be below 3.4 (cf. line a). To keep p above 0.95, s must be above
- - :i line b). Multiplying equation (a0) by the factor - 2.303 RT gives:

lG1 : - 2.303sRT,

-::e 1G,, and AG, are the Gibbs free enthalpy changes upon formation of
rBC and C, respectively. Let us now assume that the difference in the free
. ..:.-ripv between these complexes is solely based on entropy. This means that

(41)
AG,

z
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1.9

0.0

\ 0's

0.{

0.e

Fig.8a. Surface and (b) contour
plot of the autocatalytic reaction
order p as a function of the decadic
logarithm of K, and Kr. The values
of p were calculated with Eq. (38)

for a:b:10 3M. c:10 4M.
The lines a and b in Fig. 8b repres-
ent Eq. (40) for s : 3.4, and s : 4.8,
respectively. Line c represents Eq.
(42) divided bv 2.303 RT

the enthalpy of base-stacking across the reaction site (nick) in the termolecular
complex is comparable to the duplex. In other words, it is assumed that ABC
and C2 adopt similar conformations. Note that the formation of C, requires one
nucleation (helix initiation) step whereas ABC requires two nucleations. The
entropy which accounts for the nick in ABC is thus given by the entropy change
4S.," of the additional nucleation step:

AGl :AGr-TAS,."
A typical value for AS.," of C/G-rich oligonucleotides is - 12.6e.u. [a6]. The
line c in Fig. 8b-representing Eq. @2) divided by - 2.303RT-is based on this

468
log Kt

(42)
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, -. l : .niersections of this line with the lines a and b can be calculated from
l-,u tt-,.

lG. - lT(ASnu" - 2.303sR) (43)

- , - :. -l-l r can now be used to estimate the free enthalpy of duplex formation
, :.r'r'de d to achieve a certain kind of autocatalytic growth at the given set

- .-:l:rations. The required free enthalpy change for the formation of ABC
'-:r. ,,rlc'ulated from Eq. (421. Autocatalytic growth of the order p > 0.95

- -' -. :rptrnential), for example, should be observable at T : 298 K, if - AGI
-- :-::i 19 kcal/mol ( - AG, :20.3 kcal/mol). Smaller complex stabilities of

\BC ,::3 required for parabolic growth (p < 0.55): At T:298 K, - AG,
- -.r re no larger than 15.5 kcal/mol ( - AGr : 16.8 kcal/mol). The required
--: ;:::halpies may be compared with those derived from the thermodynamic
,.,.: ... duplex-singlestrand transitions. The reversible formation of the hexa-

-: r.'. nucleotide duplex (dGCGCGC)r, for example, was shown to proceed with
'.l : - 56.2kcallmol, and ASo: - l54e.u. at pH 7 and l MNaCl [47].
l .. .-..rresponds to a change in free enthalpy of - AGorna: l0.3kcal/mol.
:.---:JinS to Eq. (42), - AGr at T:298 K (formation of the termolecular
- :'.rler ABC ( : dGCG'dCGC'dGCGCGC)) is assumed to be 6.7 kcal/mol

: K - : ;1.9) which is far below the maximum value allowing parabolic growth

-..::ren further below the minimum required for exponential growth at the

- .:n set of concentrations. Thus, C/G-rich hexadeoxynucleotides should ex-
- r:: parabolic growth at the given temperature and the given set of concentra-
..-'rs rihich indeed was found experimentally [36]. A more detailed analysis of
::: kinetic behavior of self-replicating hexadeoxynucleotides is the subject of
S:--:. -1.

-1.-i Classification of Minimal Replicators

. : - :r an inspection of Eq. (33), three limit cases can be deduced, which allow us

:.,issifr the autocatalytic growth of synthetic replicators as parabolic, weak
:,::rr'nti&l and strong exponential. The conditions leading to the latter cases

-:: ,.:red together with the resulting rate laws in table 1. These limit cases
-:-.:re also evident from a triple-logarithmic plot of the autocatalytic rate,

-- ::. .rs a function of K, and K, at a given set of concentrations. Figure 9

-..r;ieS this for the set of concentrations which were used to generate Fig.
'- r Thus. Figs 9 and 8a may be directly compared. The rates were calculated
- :- Eqs. (33) and (36) using the rate constant k : 1. The overall surface shown
- i _:. 9 can be divided into three sections indicated as se ( : strong expo-
-:i.i;ir. *e (: weak exponential), and p (: parabolic). Each of the three
:- -ilS approaches an asymptotic plane which is described by the logarithmic

. ..i the corresponding limit rate law given in Table 1. The intersections
-: .i.33fr these planes define borderlines which refer to the conditions listed in
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Table 1. Since each section is separated from each other by two borderlines, two
conditions are required to separate each limit case from another.

In the case of strong exponential growth, the rate law neither depends on k,
nor on Kr. Each template molecule exists in the form of its termolecular
complex ABC and an increase of the stability of the latter, for example, cannot
increase its population. The case of strong exponential growth may thus be
compared with the case of maximal velocity observed in enzyme kinetics when
the enzyme becomes saturated with the substrate. The limit rate law of weak
exponential growth does not depend on K, but does depend on Kr. Template
molecules may exist as termolecular complexes ABC or as unbound molecules C
but not as duplexes C, here. An increase of K, shifts the population of
termolecular complexes ABC towards higher densities. The limit rate law for

Table l. Classification ofautocatalysis for synthetic replicators at internal equilibrium. For systems
in which the complex AB is involved. the expression K,ab has to be calculated with Eq. (35); Krab_^ |

Autocatalytic
growth type

1. Condition 2. Condition Limit rate law

Parabolic
'.2 

Kr" ) Krab

Weak exponential u2 Krc ( 1

Strong exponential K,aU > ,2t<rc

''2 
Krc ) I

K,ab ( 1

K,ab ) 1

dc kK, ab.r,c

dt
t z N:

dc
;: kKrabc
dt

dc _ t.^
dt

R-,t
q\-t

Fig. 9. Triple-logarithmic plot of the
autocatalytic rate dc,ldt as a function
of K, and Kr. The rates were calcu-
lated with Eqs. (36) and (33) for a : b
:10 3M, c:10 aM and k:1

day-t. The gre.v lines above the sur-
face indicate the intersections be-
tween asymptotic planes which ac-
count for the limit rate laws in Table
l. Abbreviations: .se - strong expo-
nential, we: weak exponential, p

= parabolic
4-^+'\s \ov

s
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r-r:r..:; ero$'th is a square-root law. Here, the rate increases with the stability
' : .i:mLrlecular complex, expressed by Kr, whereas it decreases with the

-- '.... .ri the template duplex, since Kr is in the denominator. Template
- - - ...:. ma1 exist either as termolecular complexes ABC or as duplexes C, but
' :'. .e.ist not to a significant amount) as unbound molecules C.

. -: .-.rnditions given in Table I allow to predict the type of autocatalysis
- - :3 quantities a, b, c, Kr, and Kr. This can be done for systems, in which
.- -:.: K. are either known from thermodynamic measurements, or estimated
- - :-.:erison with similar equilibria. Rebek's first replicator, for example,.was
-: :.:i trr have an dimerisation constant of K2 : 630 M-t (cf. Fig.3b, system

-..:, \ll other complexes-their formation being described by equations
- I r \\'ere assumed to have an formation constant of 60 M - I [35]. From

-: ..\en numbers it follows that K, :602:3600 M-2. The initial total
, --3:rrations of A and B were in the order of 0.01 M[35]. Using the reciprocal
- , :::ssion (35), Krab : 0.18. At a total template concentration of c : 0.001 M,
,, - -'lr .igain is close to the experimental concentration. u Zt<r. ( : 1.12) is close

. Teble I reveals that under the given set of conditions, Rebek's replicator is

:, r:.i3d to show a transient type of autocatalysis which is between the
r:':rtriic and the weak exponential case. Indeed, from Eq. (38), the reaction

::: p is predicted to be 0.74 at c : 1 mM. Higher values of p are expected at
.i,:: template concentrations: p : 0.93 at c : 0.1 mM, p : 0.99 at c

: ,,1 mM. It should be mentioned that although the square-root law is
r --.:.rieli'not applicable here, Eq. (2)with p -- 1 2 gave a significantly better fit

: :re erperimental curves as compared to evaluations based on higher values of
I -16] This discrepancy is not due to the limitations of the classification method

. .:n. Rebek's second replicator (Kr : 3600 M-t, K, : 80000 M 1, co : s"
- t):Q M. cf. Figure 3b, system II) [37], however, can be classified as parabolic

:: certainty: K,ab:0.03: .2Kr.: 13 at c: I mM. V2Kr" :4 at c

- . 
r 6\'[. As to be expected, equation (2) based on the square-root law gave an

.,,:;lent fit to the experimental data [37].

The Effect of the Temperature on the Equilibria,
{utocatalytic Rate and Reaction Order

: ,:::rmental studies on self-replicating hexadeoxynucleotides revealed a re-
- -:,.:rle temperature dependance of the autocatalytic synthesis [48]. In any
--:: .ri rate was found to exhibit a characteristic maximum at an optimal
:-:.:;ture Too,. An understanding of this phenomenon makes it necessary to
- i.:.r3r the influence of the temperature on the rate and equilibrium constants

- :.:rmal selfreplicating system. This is done in the following for the minimal
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reaction model as defined with the reaction Eqs. (1a) {16). The main goal here is
to explain Too, in terms of the temperature-independant thermodynamic and
kinetic quantities involved. The results from an analytical treatment of the
coupled equilibria (14) and (15) are graphically illustrated and compared to
those derived from a numerical treatment of the coupled equilibria (15),
(17)-(20). In a later section, the reaction model is extended to account for the
reaction equation (21).

Consider Eq. (36). Both, the rate constant k, and the equilibrium concentra-
tion [ABC] depend on the temperature. The rate constant k is expected to
increase with the temperature according to the law of Arrhenius:

t E"lk:Aexpl-oil @4\
L_

In the latter equation, A describes the frequency factor uiz. the rate at infinite
temperature and E" the activation energy. The equilibrium concentration
[ABC] is expected to decrease with the temperature due to the weakening of the
noncovalent interactions which stabilize the complex. [ABC] can be expressed
as a function of the temperature, if the equilibrium constants K, (cf. Eq. (29)) and
K, in Eq. (33) are substituted using the thermodynamic relationships:

,, I aHr asl-ln.r:exPL- nf * * l
,. __. _ [ nH, lsrlK::exPL- *r* R-l

AH1, AH2 are the enthalpy changes and ASr, AS2 the entropy changes upon
formation of the complexes ABC and C, respectively. For oligoribo- and
oligodeoxyribonucleotides a wealth of thermodynamic information is available

146,49,50]. From multivariate statistical analyses of sequence-dependant data,
tables of enthalpic and entropic increments were compiled which allow to
estimate the required quantities for any given sequence146,50]. In many cases

the estimates are astonishingly good, although for a general use of these tables
care must be taken for the conditions (pH, ionic strength) on which the
increments are based.

As an example, the thermodynamic data for the following complexes were
estimated from sequence increments [46]:

d(C-C-G C G G)r: AH2 : - 56 kcal/mol, AS, : - 149 e.u.

d(C-C-G)'d(C-G-G): AHo : - 22kcallmol, ASo : - 66 e.u.

Based on these data, two estimates for the termolecular complex ABC
(: d(C C G C-G-G)'d(C-C G)'d(C G G)) can be made. In the best case,

which refers to a cooperative binding of the trimers, the thermodynamic data of
ABC are given by:

AHl : AH2: - 56kcal/mol, AS, : ASz * ASn,": - l62e.u.

(45)

(46\



,i:-rr Theor)' I: Parabolic Versus Exponential Growth
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i r:. lt,Fa. b. Partition of the species ABC, Cl and C as a function of the temperature T for the case of

i . :,erarire. and (b) non-cooperative foimation of ABC. The solid curves were generated using
'.::. ,:ll.(31),(30) forABC,ClC,respectively.Theequilibriumconstantsinthelatterequations
. . -: - =..: ulated from the enthalpic and entropic data given in the text; the total concent ratrons were

_ -: - l0 3M,c:10-aM; quantityqwascalculatedusingEq.(29).The dashedcurues(mostly
- ::::. r\ the solid counterpartsJ were generated by an iterative calculation ofthe coupled equilibria

- 
- i using the following data for the transient complexes AC and BC: AHn. : AHgc : AHo,

-> : fSgcL ASo. Moreover, the formation of ABC from AC and BC was calculated as follows:

r -lH'u.ii':ÄHz-ÄHnc, AHou..".:^H2-^Ho, ÄSnP..oq:ÄS:-ASAC+^S""'
-..., -.il ÄS, - ÄS". + ÄS-".; (b) ÄHnu..o. : AH6, AHas6.sc : AHo, ÄSo"..o. : ÄSs, ÄSas6.sq

T:: rationale behind these assumptions is the one which leads to Eq. (42). A

:-,-.n-cooperative binding of the trimers must be considered as the worst case:

AH1 :2AHo: - 44kcallmol, 
^S1 

:2ASo : - 132e.u.

Figure 10a shows for the best case data and Fig. l0b for the worst case data

,i the equilibrium distribution of the species ABC, C. and C, depend on the

.:::perature. The solid curves in both figures were generated using Eq. (33) for
rBC. Eq. (30) for C, and Eq. (31) lor Cr. The dashed curves result from an

.::.tti\e computation of the equilibrium distribution when the transient com-

:.:\es as described by the reaction Eqs. (171(20) are considered explicitly. It
,.- -rmes evident that the models are barely distinguishable with resp€ct to their

-.'-::s. both, in the cooperative and in the non-cooperative case' In any case, the
.::::.rlecular complex ABC exists at low temperatures, the template duplex C, at

,..:rse temperatures, and the unbound template C at high temperatures. The

- .::ence between the cooperative and the noncooperative case is basically

-.:3:mined by the temperature below which the termolecular complex ABC can

j, :,.

F.-rllowing Eqs. (36), (33), and (44)146), the autocatalytic rate can be

:,::3ssed as a function of ten variables:

137

t^

dt

TfC

: f(T, a, b, c, A, E^, AH1, AS1, AH2, AS2) (41)
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Fig. lla,b. Logarithm of the
autocatalytic rate r of templ-
ate formation as a function of
the temperature T for the case

of(a) cooperative, and (b) non-
cooperative formation of
ABC. The solid curves were
generated for the given activa-
tion energies E.; A
:1011 s t. The dashetl cur-

le.s were generated for the
condition for parabolic
growth as given in Table 2: (a)
E. : 28 kcal mol: {b) E"
: 16 kcalimol. Dors indicate
rate maxima. Further data
and conditions as given in the
legend of Fig. 10
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An interesting property of Eq. (47) is revealed when plotting the logarithm of
the autocatalytic rate r as the function of the temperature T for different
activation energies E" (Fig. lla,b). The curves in Fig. 11a,b were calculated
based on the "standard" set of concentrations and on the set of thermodynamic
data estimated above for the cooperative (Fig. 11a) and the non-cooperative
case (Fig. 11b). The activation energies vary between 10kcal/mol (top curves)

and 30 kcal/mol (bottom curves), whereas the frequency factor A was kept
constant. Since the latter quantity only influences the intercept of the curves at
the 1og r-axis but does not affect the course of the slopes, it could be chosen

arbitrarily. Fig. 12a,b show for the above data a plot of the autocatalytic
reaction order p as a function of the temperature. Figures 12a,b were generated
by Eq. (38) providing the equiiibrium constants from Eqs. (45) and (46).

The overall temperature response of a minimal self-replicating system can be

separated into three stages. At low temperatures the system behaves as a strong
exponential replicator (cf. Table 1). At this stage the rate increases with an
increase of the temperature. At high temperatures the system behaves as a weak
exponential replicator. Here the rate decreases with an increase of the temper-

10070
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i.. lla.b. Autocatalytic reaction order p as a function ofthe temperature T for the case of(a)
. r':r:irri. and (b) non-cooperative formation ofABC. The curves were generated using Eq. (38).
: ,- -.. l.re and conditions as given in the legend of Fig. l0

- ,:: \t average temperatures the system behaves as a parabolic replicator.
::::-ihe rate may either increase or decrease with the temperature.

Ti3 rate maximum is found for the condition:

(48)

. ..3 .rptimal temperature, Too,, is the temperature at which the rate maximum
.: '.:s Figure 1 1a reveals that for low activation energies Eu the rate maximum
: :-:i) is found close to the transition from strong exponential to parabolic

. .i:h s'hereas for high activation energies, the rate maximum occurs close to
'-:::-rnsition from parabolic to weak exponential growth. There is a certain

- - i , :iit'rn energy at which the rate maximum is found at the stage of parabolic
.: .,,:h tdashed curve). The activation energy required for parabolic growth in
.-: .;se of noncooperative binding (Fig. 11b) is lower than in the case of
- :e:ati\e binding (Fig. 11a). The condition which enables parabolic growth
-- 13 calculated from the corresponding limit rate law given in Table 1. We
- . . ::* rite the square-root law in logarithmic form substituting k, Kr, and Kt
-. :: Eqs. G4146):

, Id.lüt I

I drl :0
dT

AHr-2(E"+AH1)
2RT

:::ate is maximal, the logarithm of the rate is maximal as well:

.4!;aL-''"[^ä] @s)
, [d.l

Ldr I

IaclJlnl . I

Ldt l
dT

2(E^+AH1)-AH2 :0
2RT2

(50)
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It follows from Eq. (50):

* aH, - 2LHlE"::* (51)
z

Equation (51)describes the condition under which parabolic growth is optimal
with respect to the temperature. In most cases condition (51)will not be satisfied.
The rate maximum is then expected to be found either close to the temperature
T, at which the growth changes from strong exponential to parabolic, or close

to the temperature T2, at which the transition from parabolic to weak expo-
nential growth takes place. The conditions for these transitions are those which
separate the limit rate laws given in Table 1. For the temperature Tr the
condition reads:

l2Krc : Kr ab

whereas the condition for the temperature T, is given by:

l/2Krc : I

From Eqs. (52) and (53), the transition temperatures T, and T , can be calculated
if the equilibria constants are substituted by Eqs. (45) and (46). The results are
summarized in Table 2. The numerical values for the above data sets are: Tt
: 64'C, Tr : - 9'C (best case); Tr : 64"C, Tr : - 64'C (worst case). Note

that the transition temperatures T, and T, given in Table 2 correspond to the

Table 2. Estimation of the optimal temperatures \o, for systems in which the formation of ÄB is
negligible

G. von Kiedrowski

(s2)

(5 3)

Rate
maximum at

Condition Approximate Toor

Strong expon.

Strong expon. to
parabolic

Parabolic

Parabolic to weak
expon.

Weak expon.

E" :0

aH, - 2^H,
0<8.<-2

AH, 2AH,
E": --2

aH2 - 2AH1

T.o, ( T,

Tr:
fa'b'l

^S2-2451 
-*'"1 _l

Tr<Toe,<T2

AH" - 2AH, AH"
-^H,>E"> T,-

2 - ÄS,+Rln12c)

E-> -^H, T"o, ) T,
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-. :r-rirrtures of the complexes ABC and C, respectively. The melting
. - - 

--., : ,ra .rn oligonucleotide duplex is usually defined as the temperature
- -.,.. oi the total oligonucleotide concentration exists in the form of the

. , : -- r:.1 .\ccording to Table 2, a minimal replicator is expected to work
- -,:.' l.ilrimum if the temperature is adjusted close to the melting
.' ----- - : lrieither ABC or Cl The condition given in Table 2 allows us to

- -. ,. .. ^:::er T, or T, is the appropriate temperature.
-: :..-,rtion becomes more complicated if the formation of the complex AB

- r :.:ilr taken into account. Again, it is likely that such a process occurs in
- ' :,:::rmental systems since A and B are complementary. The analytical
-- - *::.: begins with Eq. (35), in which Ko is expressed by:

t AHo 
^so-lN:exPL RT*nl

t- -,nd 156 describe the enthalpy- and entropy changes upon formation of
\B I:..rrder to illustrate the role of this equilibrium, we will make use of the

:-.-:.rri and entropic data given above.

: :-:res l3a,b l5a,b may be directly compared with Figs. 10a,b-12a,b. The
:,-:..-'n of the complexes ABC, C and C, (Figs. 13a,b, solid curves) was

- - - - ':id from the respective Eqs (33), (30), (31) taking the quantity q from Eq.

i r \:ein. the dashed curves which account for the more complete set of
-- -- .rn equations, Eqs. (15), (17)121)-do not exhibit a substantial deviation
- -' :he solid curves. This again means that the analytical equations are

'- :::nt for an approximate description of the temperature response of an
:, *:iibrated" self-replicating system. A comparison of Figs. 10a and 13a shows,

-50 -20 10 40 70 100
, Tl'C b

: . l-ia.b. Partition of the species ABC, Cl and C as a function of the temperature T if the
--i-.:rn of AB is not neglected: (a) cooperative, and (b) non-cooperative formation of ABC. The

. - - :rrtrn uas performed as described in the legend of Fig. 10; Eq. (35) was used to calculate the
- - -:::: . q from c^ : cs : 10- 3 M. Further data and conditions as given in the legend of Fig. 10

(54)

TfC
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that the additional equilibrium softens the transition from ABC to c, but does
not influence the transition from c2 to c. As a consequence of the former, the
temperature range which allows for parabolic growth is increased towards lower
temperatures (Fig. 15a). In the case of a non-cooperative formation of ABC, the
stage of strong exponential growth becomes practically inaccessable, if the
complex AB comes into play (Fig. l5b).

Interestingly to note, that the rate maximum for low values of Eu is no longer
close to the transition from strong exponential to parabolic g.o*th. Instead, if
the formation of AB contributes to the internal equilibria, theiate maxrmum for
low activation energies is always observed at the stage of parabolic growth,
both, in the case of a cooperative (Fig. 14a) and u ,,or-Äop.rätive formation of
ABC (fig' 14b). However, since the transition from C, to c is not affected by the
additional equilibrium, high values of E" allow us to observe the rate maximum
close to the respective transition temperature Tr. As a consequence, the
experimental search for strong exponential growth wlll probably suffer from the
equilibrium under consideration. The only opportunity for exponential growth
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n"-bo' '-bo ' 1b 
' 'ab zb tÖo

u T/"C

r .: I 5a. b. .{utocatalytic reaction order p as a function of the temperature T if the formation of AB
' :::ir-cted: (a) cooperative, and (b) non-cooperative formation of ABC. Further data and
- - : :: -rs given in the legends of Figs. l0 and 13

. -:1 .Lrnceived for the stage of weak exponential growth which requires a
:-:::rture above Tr. Whether or not this type of growth is observable
: :::.mentally, will depend on the temperature response of other reactions (i. e.
- ,-iutLrcatalytic template formation, precursor activation, hydrolysis reac-

r> \\ hich are not considered here.

5 Summary and Conclusions

--.- jro\e analytical treatment gives an elementary understanding how the

--:--i:.rl\tic growth of a minimal self-replicating system depends on the
-. ::odrnamic properties of the complexes involved. If the irreversible step is

--'- ::termining, the autocatalytic reaction order p is solely determined by the

-:,:J equilibrra. The values of p which one can expect for a minimal
-:r. -:irrr are always between l12 and 1. For p : l12,the autocatalytic growth
--: r.i3fi termed parabolic, whereas for p : I, growth is known as exponential.
: - .:: ..n a consideration of limit cases, two types of exponential growth can be

-- :.:.rished, which have been introduced as strong and weak exponential
: ',::. Strong exponential growth can only occur at low temperatures where
-: .::rlolecular complex ABC is the predominant species. Weak exponential

:- .;.r is predicted for high temperatures where the equilibrium concentration
.- .'t-rmplexes is very small. Parabolic growth is expected for average

:-r':r;tur€S where the template duplex C, is the predominant species. The
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theory explains that the replication rate is maximal at a certain temperature.
The optimal temperature depends on the activation energy of the irreversible
step. Above a critical activation energy the rate optimum is found at a

temperature which is close to the melting temperature of the template duplex Cr.

For activation energies which are substantially smaller than this threshold
value, the rate optimum occurs close to the melting temperature of the termole-
cular complex ABC. Moreover, in the realistic case of a formation of a complex
AB, the rate optimum occurs at the stage of parabolic growth.

The theory should prove useful for those chemists who aim to design self-

replicating systems. If thermodynamic data for the involved complexes are

available, or, if reasonable estimates can be made, Eq. (33) in combination with
Eq. (35) allows us to calculate the equilibrium concentration of the termolecular
complex from the total concentrations of A, B and C. The equilibrium concen-
tration of ABC is proportional to the rate of the autocatalytic synthesis. The
autocatalytic rate law for the given set ofconcentrations is characterized by the

reaction order p, which can be calculated from Eq. (38). Moreover, the condi-
tions given in Table 1 allow us to predict, whether the growth at the given
concentrations is parabolic, weak exponential or strong exponential. The
corresponding equations are simple enough to be programmed on a benchtop
calculator. The application of the analytical equations is however limited to
those systems whose autocatalytic synthesis can be based on the reaction model
Eqs. (1a){16), and (21). Nevertheless, the reaction model can be extended to
account for the formation of hairpins. If, for example, template C undergoes an

equilibrium with its hairpin C' having the formation constant K, [45], the

variable q from Eq. (29), or Eq. (35) must simply be multiplied by the factor
1+K3.

The important limitation of the theory comes from the assumption that the
reaction (14)is rate limiting. If the complexes ABC and C, are very stable, this
assumption may not be valid. For oligonucleotide based systems the rate
constant k can be estimated to be in the order between 1 10-3 s-1, depending
on the type of the condensation reaction. The association rate constants for the
formation of oligonucleotide complexes were reported to be rather independant
from the temperature and from the length of the oligonucleotides involved [51].
A typical value is ku..: 107 M-1s t l47). In order to keep the system at its
internal equilibrium, the dissociation rate constant for C, (and also for ABC)
must exceed the above values for k. This restricts the application of the theory to
a range of K, between 106 10e M-1 here. Clearly, the rates shown in Figs 11

and 14 do overestimate the real rates at low temperatures. Towards low
temperatures the assumption of internal equilibrium is no longer valid, since the
dissociation of C, becomes more and more rate limiting. As a consequence of the
latter, the rate maximum is observed at the stage of parabolic growth even for
low activation energies. Based on this consideration, it has already been stated
that parabolic growth is an optimal type of growth for self-replicating oligonuc-
leotides [1]. A more detailed analysis of self-replicating systems which are no
longer equilibrated is the subject of the second part of this theory.
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l --,ilr. the above theory complements theoretical results of E. Szathmary
'- rl- It w'as shown, that self-replicating molecules which compete for their

i -:- -r:rrrS under the constraint of constant organization (viz. in a flow reactor- :--'h the total concentration of the competing templates is kept constant)
- - - , : undergo Darwinian selection, if the growth is sub-exponential. Darwin-
-- .:.ection means that the most efficient replicator outgrows its less efficient
- -:irrtors and finally supersedes them in the reaction chamber ("survival of
- : -.::est"). Selection necessitates exponential growth; competition between

: --:r,rlic replicators invariably results in coexistence. Here, the efficient repli-
: :s no longer able to push away its less efficient competitors from the

- -:---rn resources. As a consequence, all replicators survive although at
- :::::t levels of concentration ("survival of everybody").

. : -'m Szathmary's results it follows that exponential growth is a conditio sine
: ir for any attempt to realize a Darwinian selection-process in an artificial

- -::plicating system. our theory provides clues, how the autocatalytic growth
' : - ntrolled by the dynamics of the reactions involved. Future experimental
-.::,-'lches may integrate these clues in the search for an exponential synthetic
-: I .-'.ltOf.
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